International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma

S Vincent Rajkumar, Meletios A Dimopoulos, Antonio Palumbo, Joan Bladé, Giampaolo Merlini, María-Victoria Mateos, Shaji Kumar, Jens Hillengass, Efstathios Kastritis, Paul Richardson, Ola Landgren, Bruno Paiva, Angela Dispenzieri, Brendan Weiss, Xavier LeLeu, Sonja Zweegman, Sagar Lonial, Laura Rosinol, Elena Zamagní, Sundar Jagannath, Orhan Sezer, Sigurdur Y Kristinsson, Jo Caers, Saad Z Usmani, Hans Erik Johnsen, Meral Bekzac, Michele Cavo, Hartmut Goldschmidt, Evangelos Terpos, Robert A Kyle, Kenneth C Anderson, Brian G Durie, Jesus F San Miguel

This International Myeloma Working Group consensus updates the disease definition of multiple myeloma to include validated biomarkers in addition to existing requirements of attributable CRAB features (hypercalcaemia, renal failure, anaemia, and bone lesions). These changes are intended to improve the identification of biomarkers associated with near inevitable development of CRAB features in patients who would otherwise be regarded as having smouldering multiple myeloma. A delay in application of the label of multiple myeloma and postponement of therapy could be detrimental to these patients. In addition to this change, we clarify and update the underlying laboratory and radiographic variables that fulfil the criteria for the presence of myeloma-defining CRAB features, and the histological and monoclonal protein requirements for the disease diagnosis. Finally, we provide specific metrics that new biomarkers should meet for inclusion in the disease definition. The International Myeloma Working Group recommends the implementation of these criteria in routine practice and in future clinical trials, and recommends that future studies analyse any differences in outcome that might occur as a result of the new disease definition.

Introduction
Multiple myeloma is a cytogenetically heterogeneous clonal plasma cell proliferative disorder and is almost always preceded by an asymptomatic premalignant stage termed monoclonal gammopathy of undetermined significance (MGUS). MGUS is present in roughly 3–4% of the population over the age of 50 years. The diagnosis of MGUS requires the absence of hypercalcaemia, renal failure, anaemia, and bone lesions (referred to as CRAB features) that can be attributed to the underlying plasma cell disorder (all features must be absent; table 1). About 80% of multiple myeloma originates from non-IgM immunoglobulin MGUS (non-IgM MGUS), and 20% from light-chain immunoglobulin MGUS (LC-MGUS). In the event of progression, IgM MGUS usually evolves into Waldenström macroglobulinaemia, but in rare instances IgM MGUS can progress to multiple myeloma (IgM myeloma). The rate of progression of MGUS to multiple myeloma is 0·5–1% per year, but the precise risk is affected by the concentration of the monoclonal protein, type of monoclonal protein, serum free light-chain ratio, bone marrow plasmacytosis, and presence of phenotypically clonal plasma cells, and presence of immunoparesis.

Smouldering multiple myeloma is an intermediate clinical stage between MGUS and multiple myeloma in which the risk of progression to malignant disease in the first 5 years after diagnosis is much higher, at about 10% per year. Prognostic models have been proposed to predict risk of progression, but lack concordance and need additional studies for verification. According to a population-based study from Scandinavia, smouldering multiple myeloma accounts for about 14% of all patients with multiple myeloma. As with MGUS, the diagnosis needs the absence of CRAB features attributable to the clonal plasma cell proliferative disorder, but the thresholds for monoclonal protein level and bone-marrow plasma cell (BMPC) percentage are different. Smouldering multiple myeloma is a biologically heterogeneous, clinically defined entity consisting of a subset of patients with biological premalignancy (ie, MGUS) and a subset with CRAB-negative malignancy (ie, multiple myeloma). It includes patients similar to those with MGUS, with a very low rate of progression, as well as patients who develop clinical symptoms and end-organ damage within the first 2 years of diagnosis. Unfortunately, no single pathological or molecular feature can be used to distinguish patients with smouldering multiple myeloma who have only clonal premalignant plasma cells from those with clonal malignant myeloma cells. A biomarker-based definition that accurately identifies the subset of patients with smouldering multiple myeloma and biological malignancy, who are at imminent risk of developing CRAB features (and should therefore be considered for therapy), is needed.

Rationale for updating of diagnostic criteria
The present disease definitions of smouldering multiple myeloma and multiple myeloma were reported by the International Myeloma Working Group (IMWG) in 2003. With minor clarifications, these criteria have been used in clinical practice as well as in research studies and trials in the past decade. One of the major difficulties in multiple myeloma is that, unlike other malignancies, the disease definition is clinicopathological; it needs overt clinical manifestations of serious end-organ damage, such as osteolytic bone lesions and renal failure, before the diagnosis can be made. This conundrum has ensured that patients cannot get early therapy to prevent organ damage, and has prevented any

Lancet Oncol 2014; 15: e538-48
See Online for a podcast interview with S Vincent Rajkumar
Division of Hematology, Mayo Clinic, Rochester, MN, USA (Prof S V Rajkumar MD, Prof S Kumar MD, Prof A Dispensieri MD, Prof R A Kyle MD); Department of Clinical Therapeutics, University of Athens, School of Medicine, Athens, Greece (Prof M A Dimopoulos MD, E Kastritis MD, E Terpos MD); Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Citta della Salute e della Scienza di Torino, Torino, Italy (Prof A Palumbo MD); Hospital Clinic, Barcelona, Spain (J Bladé MD, L Rosinol MD); Amyloidosis Center, University Hospital Policlinico San Matteo, Pavia, Italy (Prof G Merli MD); University Hospital of Salamanca/IBSAL, Salamanca, Spain (M V Mateos MD); Department of Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany (J Hillengass MD, Prof H Goldschmidt MD); Dana-Farber Cancer Institute, Boston, MA, USA (Prof P Richardson MD, Prof K C Anderson MD); Memorial Sloan Kettering Cancer Center, New York, NY, USA (O Landgren MD); Clinica Universitaria de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Pamplona, Spain (B Paiva MD, Prof F J San Miguel MD); Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA (B Weiss MD); University Hospital of Lille, Lille, France (X LeLeu MD); Department of Hematology, VU University Medical Center, Amsterdam, Netherlands (Prof S Zweegman MD); Department of Hematology

www.thelancet.com/oncology Vol 15 November 2014 e538
Table 1: International Myeloma Working Group diagnostic criteria and classification for monoclonal gammopathy of undetermined significance and related plasma-cell disorders

<table>
<thead>
<tr>
<th>Definition†‡</th>
<th>Progression rate</th>
<th>Primary progression events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-IgM monoclonal gammopathy of undetermined significance†</td>
<td>Serum monoclonal protein (non-IgM type) < 30 g/L</td>
<td>1% per year</td>
</tr>
<tr>
<td></td>
<td>Clonal bone marrow plasma cells < 10%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Absence of end-organ damage such as hypercalcaemia, renal insufficiency, anaemia, and bone lesions (CRAB) or amyloidosis that can be attributed to the plasma cell proliferative disorder</td>
<td></td>
</tr>
<tr>
<td>IgM monoclonal gammopathy of undetermined significance‡</td>
<td>Serum IgM monoclonal protein < 30 g/L</td>
<td>1.5% per year</td>
</tr>
<tr>
<td></td>
<td>Bone marrow lymphoplasmacytic infiltration < 10%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No evidence of anaemia, constitutional symptoms, hyperviscosity, lymphadenopathy, hepatosplenomegaly, or other end-organ damage that can be attributed to the underlying lymphoproliferative disorder</td>
<td></td>
</tr>
<tr>
<td>Light-chain monoclonal gammopathy of undetermined significance§</td>
<td>Abnormal FLC ratio (<0.26 or >1.65)</td>
<td>0.3% per year</td>
</tr>
<tr>
<td></td>
<td>Increased level of the appropriate involved light chain (increased κ FLC in patients with ratio >1.65 and increased λ FLC in patients with ratio <0.26)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No immunoglobulin heavy chain expression on immunofixation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Absence of end-organ damage such as hypercalcaemia, renal insufficiency, anaemia, and bone lesions (CRAB) or amyloidosis that can be attributed to the plasma cell proliferative disorder</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clonal bone marrow plasma cells < 10%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Urinary monoclonal protein < 500 mg/24 h</td>
<td></td>
</tr>
<tr>
<td>Solitary plasmacytoma†#</td>
<td>Biopsy-proven solitary lesion of bone or soft tissue with evidence of clonal plasma cells</td>
<td>About 10% within 3 years</td>
</tr>
<tr>
<td></td>
<td>Normal bone marrow with no evidence of clonal plasma cells</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Normal skeletal survey and MRI (or CT) of spine and pelvis (except for the primary solitary lesion)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Absence of end-organ damage such as hypercalcaemia, renal insufficiency, anaemia, or bone lesions (CRAB) that can be attributed to a lymphoplasma cell proliferative disorder</td>
<td></td>
</tr>
<tr>
<td>Solitary plasmacytoma with minimal marrow involvement†</td>
<td>Biopsy-proven solitary lesion of bone or soft tissue with evidence of clonal plasma cells</td>
<td>60% (bone) or 20% (soft tissue) within 3 years</td>
</tr>
<tr>
<td></td>
<td>Clonal bone marrow plasma cells < 10%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Normal skeletal survey and MRI (or CT) of spine and pelvis (except for the primary solitary lesion)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Absence of end-organ damage such as hypercalcaemia, renal insufficiency, anaemia, or bone lesions (CRAB) that can be attributed to a lymphoplasma cell proliferative disorder</td>
<td></td>
</tr>
<tr>
<td>POEMS syndrome†</td>
<td>Polyneuropathy</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Monoclonal plasma cell proliferative disorder (almost always λ)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Any one of the following three other major criteria:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sclerotic bone lesions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Castleman’s disease</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elevated levels of VEGFA§</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Any one of the following six minor criteria:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organomegaly (splenomegaly, hepatomegaly, or lymphadenopathy)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Extravascular volume overload (oedema, pleural effusion, or ascites)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Endocrinopathy (adrenal, thyroid, pituitary, gonadal, parathyroid, pancreatic)¶</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Skin changes (hypertigmentation, hypertrichosis, glomeruloid haemangiomata, plethora, acrocyanosis, flushing, white nails)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Papilloedema</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thrombocytosis/polysplenism</td>
<td></td>
</tr>
<tr>
<td>Systemic AL amyloidosis</td>
<td>Presence of an amyloid-related systemic syndrome (eg, renal, liver, heart, gastrointestinal tract, or peripheral nerve involvement)</td>
<td>Some patients might develop multiple myeloma</td>
</tr>
<tr>
<td></td>
<td>Positive amyloid staining by Congo red in any tissue (eg, fat aspirate, bone marrow, or organ biopsy)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evidence that amyloid is light-chain-related established by direct examination of the amyloid using mass spectrometry-based proteomic analysis, or immunoelectronmicroscopy, and Evidence of a monoclonal plasma cell proliferative disorder (serum or urine monoclonal protein, abnormal free light-chain ratio, or clonal plasma cells in the bone marrow)</td>
<td></td>
</tr>
</tbody>
</table>

IgM=immunoglobulin M. AL=immunoglobulin light-chain amyloidosis. AHL=immunoglobulin heavy and light-chain amyloidosis. AH=immunoglobulin heavy chain amyloidosis. FLC=free light chain. *Bone marrow can be deferred in patients with low-risk monoclonal gammopathy of undetermined significance (IgG type, monoclonal protein <15 g/L, normal free light-chain ratio) in whom there are no clinical features concerning for myeloma. †Solitary plasmacytoma with 10% or more clonal plasma cells is regarded as multiple myeloma. ‡Not every patient meeting these criteria will have POEMS syndrome; the features should have a temporal association with each other and no other attributable cause. Anaemia or thrombocytopenia are distinctly unusual in this syndrome unless Castleman’s disease is present. §The source data do not define an optimal cutoff value for considering elevated VEGFA level as a major criterion. We suggest that VEGFA measured in the serum or plasma should be at least three to four times higher than normal. §§Some patients might develop multiple myeloma. ††All presented criteria must be met for the disease to be diagnosed.

and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA (Prof S Lonial MD); Seregni Institute of Hematology, Bologna University School of Medicine, Bologna, Italy

Attempts at cancer treatment at a stage when it is in its most susceptible microenvironment-dependent state. These criteria were acceptable in an era of restricted treatment options that had substantial toxic effects and did not show any apparent clinical benefit from early intervention. However, this definition can no longer be justified because treatment options have greatly improved, and data show early intervention in high-risk asymptomatic patients can extend survival. Moreover, advances in laboratory and imaging techniques call for an update on the specific variables that should be regarded as meeting the criteria for CRAB features.
Finally, some revisions to the monoclonal protein and bone marrow plasma cell requirements are also needed.

Myeloma-defining biomarkers

To intervene before the development of end-organ damage in multiple myeloma, biomarkers are needed that accurately identify the subset of patients with smouldering multiple myeloma who have biological malignancy and are at imminent risk of progression.\(^1\)\(^{–}\)\(^4\)\(^4\)

A Mayo Clinic study\(^4\) of patients with smouldering multiple myeloma reported that having a BMPC of at least 60% can be used as a marker to identify patients with a notably high risk (about 90%) of progression within 2 years of diagnosis. In 2011 at a summit in London, UK, the IMWG reached a consensus that, if reliable biomarkers associated with roughly an 80% probability of progression to multiple myeloma within 2 years were identified, such patients should be regarded as having multiple myeloma and offered therapy. This threshold would identify a small cohort of smouldering multiple myeloma with a median time to development of end-organ damage of about 12 months, for whom a delay of therapy would be unreasonable. The IMWG consensus was driven by the following considerations. First, this very high-risk cohort is not representative of most patients with smouldering multiple myeloma, in view of the 40% per year risk of progression (based on the prespecified definition), compared with the 10% per year risk of progression with smouldering multiple myeloma. Second, one of the reasons to delay therapy in smouldering multiple myeloma is based on the fact that a substantial proportion of patients can remain free of progression for long periods of time. For example, 50% of patients with smouldering multiple myeloma do not progress in the first 5 years, and roughly 30% are free of progression after 10 years.\(^5\)\(^6\)\(^6\)\(^6\) Such considerations do not apply to this ultra-high risk subgroup in which few, if any, patients are free of progression beyond 3 years. Third, the proportion of patients who do not progress within 2 years (up to 20%) was regarded to be reasonable, because these patients are probably not very different from some patients with multiple myeloma who have minimal CRAB features for whom prompt treatment is widely accepted (eg, patients with one or two lytic lesions, or mild anaemia), yet who can remain stable without therapy. Fourth, the results of end-organ damage, especially acute renal failure or pathological fracture, were judged to be unacceptably severe, with risk of substantial long-term morbidity. Therefore, we believed that persisting with a disease definition that demanded such damage occur before the disease is called multiple myeloma was unreasonable for patients. Finally, we believed that major advances have been made in the treatment of multiple myeloma, and although watchful waiting was appropriate in an era of only alkylating agents and corticosteroids, it was not justifiable for ultra-high-risk patients in view of the availability of several safer and more effective treatments.\(^7\)\(^–\)\(^9\) Trials with alkylators that did not show an increase in overall survival with early treatment for smouldering multiple myeloma were underpowered, and did not focus on high-risk patients.\(^10\)\(^11\) A randomised trial\(^12\) done in 2013 reported that early therapy for smouldering multiple myeloma can extend overall survival, greatly diminishing concerns that treatment of patients with a very high-risk of smouldering multiple myeloma will lead to overtreatment or unnecessary therapy.

Revisions to laboratory and imaging criteria for CRAB

In addition to the previous discussion on incorporation of additional biomarker-defined myeloma-defining events to the standard CRAB features, updates are also needed that take into account the substantial changes to laboratory testing and imaging used in the diagnosis of multiple myeloma that have happened since the initial publication of the IMWG diagnostic criteria. These include better methods of detecting bone and extramedullary disease using CT (including low-dose whole body CT), MRI, \(^18\)F-fluorodeoxyglucose (FDG) PET, and FDG-PET with CT (PET-CT).\(^13\)\(^–\)\(^16\) They also include better estimation of renal damage by use of creatinine clearance in addition to serum creatinine measurements, and the criteria for clonal bone marrow plasma cells needed on bone marrow examination have been revised.

Other revisions

Other minor clarifications to the disease definition are needed to account for patients with non-secretory multiple myeloma (where there is no monoclonal protein in any tests), and patients with normal or scarcely involved (<10% clonal plasma cells) bone marrow examinations who have multiple lytic lesions, plasmacytomas (bony or extramedullary), or other CRAB features without diffuse infiltration of the marrow.

Revised IMWG criteria for diagnosis of myeloma

The updated IMWG criteria for diagnosis of multiple myeloma are given in the panel; the supporting data for each of the changes are discussed below. The term multiple myeloma refers to multiple myeloma requiring therapy.

Bone marrow plasma cells of 60% or greater

In 2011, a re-analysis of the original Mayo Clinic cohort of smouldering multiple myeloma noted that only six (2%) of 276 patients had a BMPC of 60% or greater (defined as the highest percentage noted on an aspirate or trephine biopsy sections). The median progression-free survival was 7.7 months (95% CI 0.4–14.9), and five of the six patients (83%) patients had progressed or died by 14 months.\(^17\)

To validate this finding, a study was done in a new group of 651 patients with smouldering multiple
myeloma diagnosed at the Mayo Clinic between January, 1996, and June, 2010. Only 21 (3%) patients had a BMPC of 60% or greater, and 95% of these patients progressed to multiple myeloma within 2 years of diagnosis (median time to progression 7·0 months [95% CI 1·0–12·9]). These studies showed that extreme plasmacytosis was uncommon in smouldering multiple myeloma, because at that level of plasmacytosis, CRAB features—especially anaemia—almost always occur, which results in a diagnosis of multiple myeloma. The investigators recommended that in view of the clinical course noted, patients with 60% or greater plasma cell involvement on marrow examination should be regarded as having multiple myeloma requiring therapy irrespective of the presence or absence of CRAB features. This finding was subsequently validated in an investigation of 96 patients with smouldering multiple myeloma by Kastritis and colleagues from the Greek Myeloma Group, who showed that BMPC of 60% of greater was associated with a high risk of progression (median time to progression of 15·0 months, hazard ratio [HR] 13·7 [95% CI 4·44–42·50]; p<0·001). Six (5%) of 121 patients with smouldering multiple myeloma in a third study were reported to have BMPC 60% or greater, and all progressed to multiple myeloma within 2 years. BMPC estimation for diagnosis is based on either conventional bone marrow aspirate or biopsy examination. BMPC estimation should not be based on the proportion of plasma cells reported by flow cytometry; studies are ongoing to determine whether flow-based enumeration is feasible. If a discrepancy exists between BMPC estimation in the biopsy sample and aspirate, the higher of the two values should be used. Serum free light chain ratio of 100 or greater

The free light chain (FLC) assay is an automated nephelometric assay that identifies and measures κ and λ light immunoglobulin chains that circulate unbound to heavy chains in the serum. The normal ratio for FLC-κ/λ is 0·26–1·65. In clonal plasma cell disorders, excess production of one FLC type (the clonal component referred to as the involved light chain) often results in an abnormal FLC ratio. About a third of patients with MGUS, 70% of patients with smouldering multiple myeloma, and more than 90% of patients with multiple myeloma have altered FLC ratios that indicate excess production of a clonal FLC by the proliferating plasma cell population. The presence of an abnormal FLC ratio, and the extent to which the FLC ratio is abnormal, predict risk of progression in MGUS, smouldering multiple myeloma, amyloid light-chain (AL) amyloidosis, and solitary plasmacytoma.

Dispencer and colleagues reported that in patients with smouldering multiple myeloma, an involved to uninvolved FLC ratio of 8 or more is associated with about a 40% risk of progression within the first 2 years from diagnosis. Subsequently, Larsen and colleagues studied 586 patients with smouldering multiple myeloma to determine the threshold at which the FLC ratio is associated with an 80% probability of progression to multiple myeloma or related malignant disease within 2 years. A serum involved to uninvolved FLC ratio of at least 100 was noted in 90 (15%) patients of the total cohort; the involved FLC level was higher than the normal range in all. The risk of progression to multiple myeloma within the first 2 years in patients with an FLC ratio of at least 100 was noted in 90 (15%) patients of the total cohort; the involved FLC level was higher than the normal range in all. The risk of progression to multiple myeloma or related malignant disease within 2 years is 80% probability of progression to multiple myeloma or related malignant disease within 2 years. A serum involved to uninvolved FLC ratio of at least 100 was noted in 90 (15%) patients of the total cohort; the involved FLC level was higher than the normal range in all. The risk of progression to multiple myeloma or related malignant disease within 2 years is 80% probability of progression to multiple myeloma or related malignant disease within 2 years. A serum involved to uninvolved FLC ratio of at least 100 was noted in 90 (15%) patients of the total cohort; the involved FLC level was higher than the normal range in all. The risk of progression to multiple myeloma or related malignant disease within 2 years is 80% probability of progression to multiple myeloma or related malignant disease within 2 years. A serum involved to uninvolved FLC ratio of at least 100 was noted in 90 (15%) patients of the total cohort; the involved FLC level was higher than the normal range in all. The risk of progression to multiple myeloma or related malignant disease within 2 years is 80% probability of progression to multiple myeloma or related malignant disease within 2 years. A serum involved to uninvolved FLC ratio of at least 100 was noted in 90 (15%) patients of the total cohort; the involved FLC level was higher than the normal range in all. The risk of progression to multiple myeloma or related malignant disease within 2 years is 80% probability of progression to multiple myeloma or related malignant disease within 2 years.
multiple myeloma, and that such patients should be regarded as having multiple myeloma requiring therapy.

Similar results were obtained in work by Kastritis and colleagues73 from the Greek Myeloma Group. In their investigation of 96 patients with smouldering multiple myeloma, seven (7%) had an involved to uninvolved FLC ratio of at least 100, and almost all progressed within 18 months (HR 9·0 [95% CI 2·15–39·00], p=0·003). In a third study,68 the risk of patients with smouldering multiple myeloma with an involved to uninvolved FLC ratio of at least 100 progressing within 2 years was 64%. Although these studies did not need a minimum involved FLC level, to reduce possibility of error the new criteria require a minimum involved FLC level of at least 100 mg/L.

MRI with more than one focal lesion
MRI is beneficial in evaluating patients with smouldering multiple myeloma, and is recommended as part of the initial assessment.66 Abnormal MRI imaging features in smouldering multiple myeloma include both focal lesions (involving bone or bone marrow), and diffuse bone marrow abnormalities. These abnormalities have been associated with increased risk of progression in smouldering multiple myeloma.60–71 However, only within the past 5 years have investigators precisely determined the level of abnormality that is associated with a high probability of progression within 2 years. Hillengass and colleagues68 studied 149 patients with smouldering multiple myeloma with whole-body MRI. Focal lesions were detected in 42 (28%) patients; more than one focal lesion was identified in 23 (15%) patients of the total cohort. The presence of more than one focal lesion was associated with a substantial increase in risk of progression in smouldering multiple myeloma.60–71 However, only within the past 5 years have investigators precisely determined the level of abnormality that is associated with a high probability of progression within 2 years. Hillengass and colleagues68 studied 149 patients with smouldering multiple myeloma with whole-body MRI. Focal lesions were detected in 42 (28%) patients; more than one focal lesion was identified in 23 (15%) patients of the total cohort. The presence of more than one focal lesion was associated with a substantial increase in risk of progression in smouldering multiple myeloma.60–71 However, only within the past 5 years have investigators precisely determined the level of abnormality that is associated with a high probability of progression within 2 years.

In this updated IMWG criteria, we now clarify that clear evidence of one or more sites of osteolytic bone destruction (≥5 mm in size) seen on CT (including low-dose whole-body CT) or PET-CT does fulfil the criteria for
bone disease in multiple myeloma, and should be regarded as meeting the CRAB requirement irrespective of whether they can be visualised on skeletal radiography or not. Increased uptake on PET-CT alone is not adequate for the diagnosis of multiple myeloma; evidence of underlying osteolytic bone destruction is needed on the CT portion of the examination. Among 13 patients at the Mayo Clinic with suspected smouldering multiple myeloma and one or more osteolytic lesions on PET-CT who were observed without therapy, ten progressed within 2 years (SVR, unpublished data). Care should be taken to avoid over-interpretation of equivocal or tiny luencies seen only on CT or PET-CT; as with skeletal surveys, if there are doubts about the nature of these lesions, a repeat study in 3–6 months should be done before a diagnosis of multiple myeloma is made. Such patients might be followed up closely at 1–3 month intervals before systemic therapy is started. Similarly, patients could have other concurrent malignancies with associated bone metastases. When the diagnosis is in doubt, a biopsy of one of the bone lesions should be considered. Furthermore, in view of the incorporation and availability of more sensitive imaging modalities to identify osteolytic bone destruction, we no longer recommend the presence of osteoporosis or vertebral compression fractures alone in the absence of lytic lesions as being sufficient evidence of bone disease for purposes of the diagnostic criteria. However, if vertebral compression fractures are seen in younger patients with monoclonal gammopathy, judgment should be exercised, and additional imaging such as CT or PET-CT should be done to clarify that the changes are not related to myeloma. Bone densitometry studies are not sufficient to determine presence of multiple myeloma bone disease. Overdiagnosis of multiple myeloma among elderly patients with MGUS would be highly likely if osteoporosis and compression fractures alone were regarded as sufficient for CRAB features.

When only one osteolytic bone lesion is seen in the presence of 10% or more clonal plasma cells, no clear indication is present for systemic therapy if no other criteria are met for active myeloma, and further thought is needed. This circumstance is rare, and we recommend that patients could be given radiation therapy and observed. Clinical trials to determine the value of adjuvant systemic therapy for these patients are being planned.

Definition of renal failure
Renal insufficiency is defined in the 2003 IMWG criteria as a serum creatinine concentration of more than 173 μmol/L (roughly >2 mg/dL) that is attributable to multiple myeloma; this value corresponds to an increase of 40% above the normal upper limit of the serum creatinine.46 However, use of a fixed concentration of serum creatinine to define renal insufficiency results in patients needing widely different levels of renal dysfunction, based on age, sex, and race, to fulfil the diagnostic criteria for multiple myeloma. For example, a serum creatinine concentration of 173 μmol/L in an individual weighing 70 kg corresponds to glomerular filtration rates of 38 mL/min in a 40-year-old man, 28 mL/min in a 40-year-old woman, 35 mL/min in a 65-year-old man, and 26 mL/min in a 65-year-old woman. This drawback is well-recognised, and has already been addressed in most modern clinical trials, in which creatinine clearance (estimated glomerular filtration rates) is used for eligibility criteria. The IMWG therefore recommends that measured or estimated glomerular filtration rates (according to the modification of diet in renal disease [MDRD] or chronic kidney disease epidemiology collaboration [CKD-EPI] formulae) less than 40 mL/min (which corresponds to about a 40% decrease from the lower limit of the normal glomerular filtration rates) be used instead of a fixed serum creatinine concentration to fulfil the CRAB criteria. This ensures that a similar level of renal dysfunction attributable to the underlying plasma cell disorder is used to define the disease.

The criteria have also been updated to clarify that only renal failure caused by light-chain cast nephropathy (based on typical histological changes or presumptive diagnosis based on the presence of high involved FLC levels, typically >1500 mg/L) is regarded as a myeloma-defining event. Although other forms of renal damage (eg, AL amyloidosis, monoclonal immunoglobulin deposition disease, light-chain Fanconi syndrome, monoclonal gammopathy-associated membranoproliferative glomerulonephritis) can occur in multiple myeloma, this association is not characteristic of multiple myeloma and can be seen with other types of plasma cell dyscrasias (eg, MGUS) or lymphoproliferative disorders. Although they can occur in conjunction with multiple myeloma, in most patients they occur independently without evidence of other myeloma-defining events. For this reason, these renal disorders are not regarded as myeloma-defining events, and should not lead to multiple myeloma diagnosis, unless they meet criteria for multiple myeloma as listed in the panel. These entities represent unique disease states with clearly defined pathological features, diagnostic criteria, prognosis, and therapy. Some investigators have collectively referred to these disorders under the term monoclonal gammopathy of renal significance.47 Other causes of acute and chronic renal failure (eg, diabetic nephropathy, nephrotoxic drugs, pre-renal failure) should be carefully excluded. We recommend a renal biopsy to clarify the underlying cause of the renal failure in patients with suspected cast nephropathy, especially if the serum involved FLC levels are less than 500 mg/L, which is also consistent with the recommendations of the International Kidney and Monoclonal Gammopathy Research Group.48

Monoclonal protein requirements
The 2003 IMWG criteria recognised that serum or urinary monoclonal protein is not present in all patients with
multiple myeloma, and that a distinct subset of patients with non-secretory multiple myeloma exist (representing about 3% of multiple myeloma) who have no detectable abnormalities on serum or urine immunofixation. Roughly 30% of such patients also have a normal serum FLC assay. Because these patients clearly have multiple myeloma by virtue of meeting other required criteria, and since the clonal nature of the plasma cell proliferation is established on histopathology, the requirement for monoclonal protein presence as part of the diagnostic criteria is not mandatory. Instead, the presence or absence of an monoclonal protein is used to subdivide multiple myeloma into secretory and non-secretory types.

Bone marrow plasma cell requirements

A bone marrow examination showing presence of clonal plasma cells or histopathological evidence of a plasmacytoma is a definite requirement for the diagnosis of multiple myeloma. In the 2003 IMWG criteria, the minimum percentage of BMPC needed for the diagnosis of multiple myeloma was not stated. Only 3–5% of multiple myeloma is associated with BMPC of less than 10%. The revised diagnostic criteria clarify that in these patients, the diagnosis of multiple myeloma needs a repeat bone marrow biopsy showing 10% or more clonal plasma cells, or an image-guided (CT or MRI) biopsy of a bony or extramedullary lesion (plasmacytoma). In some of these patients this trait is caused by sampling error or patchy bone marrow involvement, while in the others there are multiple plasmacytomas or lytic lesions with no generalised marrow involvement (macrofocal multiple myeloma). CRAB features cannot be regarded as being attributable to clonal plasma cell proliferation if BMPC is less than 10% and there is no biopsy-proven plasmacytoma. Patients with related plasma cell proliferative disorders such as AL amyloidosis, POEMS syndrome, or monoclonal gammopathy-associated proliferative glomerulonephritis might seem to have CRAB-like features despite low levels of bone-marrow plasma cytosis. In these instances, the patient should not be defined as having concomitant multiple myeloma unless they meet the criteria listed in the panel. Based on these considerations, and to prevent patients with MGUS from being wrongly classified as multiple myeloma based on unrelated features of anaemia, hypercalcaemia, or renal dysfunction, the criteria have been updated to clarify that either clonal BMPC of 10% or more, or a biopsy-proven plasmacytoma, is needed for the diagnosis of multiple myeloma. Some patients who are suspected of having multiple myeloma with clonal BMPC of less than 10% might have lytic lesions or plasmacytomas that are inaccessible for biopsy; judgment should be used in the care of these patients, and additional bone marrow examinations or follow-up testing might be needed to clarify the diagnosis. Finally, patients with solitary plasmacytoma meeting criteria described in table 1 should not be regarded as having multiple myeloma.

The estimate of bone marrow plasmacytosis should be determined by conventional bone marrow aspirate or biopsy examination. If there is a discrepancy, the higher of the two values should be used. Clonality of bone marrow plasma cells should be established by demonstration of κ/λ light-chain restriction by immunohistochemistry or immunofluorescence, or by demonstration of phenotypic clonality by flow cytometry, or by immunoglobulin gene rearrangement studies.

Clarification of the need for symptoms

CRAB features are typically associated with symptoms. However, we clarify that the term symptomatic is used to refer to patients with presence of CRAB features attributable to the underlying clonal plasma cell disorder, even if they are not symptomatic to the patient, but rather discovered during tests. This clarification is mainly to help in interpretation of existing trials. Since the updated criteria include other asymptomatic patient subgroups, this is of less importance now. The term multiple myeloma is preferred instead of the term symptomatic multiple myeloma.

Other related organ or tissue impairment

Although the 2003 IMWG criteria included non-CRAB end-organ damage, specifically hyperviscosity, AL amyloidosis, and recurrent bacterial infections as fulfilling criteria for multiple myeloma, over the years only CRAB features have been regarded as myeloma-defining events. Hyperviscosity is seen mainly with high immunoglobulin A (IgA) levels (usually >30 g/L but varies between patients); such levels are almost never seen without other CRAB features, especially anaemia, as a substantial tumour load is needed to produce this event. Systemic AL amyloidosis is a distinct plasma cell dyscrasia, and its presence in a patient with a monoclonal gammopathy does not automatically suggest multiple myeloma. There are studies that try to define the specific myeloma-defining event needed for the diagnosis of concurrent multiple myeloma in patients with AL amyloidosis. Recurrent infection is a nonspecific criterion, and in view of the prevalence of MGUS in the elderly general population, it is not thought of as a validated or reliable myeloma-defining event in the absence of other CRAB features. Finally, all of these have also become less important with the inclusion of new non-CRAB biomarkers to define the disease. Thus, we do not recommend their use for the initiation of treatment.

Peripheral neuropathy is often seen in association with monoclonal gammopathies, and in some cases is causally related to the underlying monoclonal immunoglobulin. The pathogenesis is thought to be related to the effect of the monoclonal protein (or secondary biological mechanisms) on the peripheral nerves, and can occur in patients with MGUS without need for malignant transformation. Thus, peripheral neuropathy alone is not a myeloma-defining event, and patients in whom a
Potential future biomarkers for diagnosis of multiple myeloma

Table 2: Potential future biomarkers for diagnosis of multiple myeloma

<table>
<thead>
<tr>
<th>Biomarker</th>
<th>2-year probability of progression</th>
</tr>
</thead>
<tbody>
<tr>
<td>High levels of circulating plasma cells</td>
<td>80%(^\text{vs})95%</td>
</tr>
<tr>
<td>Abnormal plasma cell immunophenotype ≥95% plus immunopaesis</td>
<td>50%(^\text{vs})80%(^\text{vs})95%</td>
</tr>
<tr>
<td>Evolution of smouldering multiple myeloma(^a)</td>
<td>65%(^\text{vs})95%</td>
</tr>
<tr>
<td>Cytogenetic subtypes: t(4;14), 1q amp, or del 17p</td>
<td>50%(^\text{vs})80%(^\text{vs})95%</td>
</tr>
<tr>
<td>High bone marrow plasma cell proliferative rate</td>
<td>80%(^\text{vs})95%</td>
</tr>
</tbody>
</table>
| Unexplained decrease in creatinine clearance by ≥25% accompanied by a rise in urinary monoclonal protein or serum free light-chain concentrations | Not known

\(^a\)Increase in serum monoclonal protein by ≥10% on each of two successive evaluations within a 6-month period.

Search strategy and selection criteria

We searched PubMed for articles published in English between Jan 1, 1980, and June 30, 2014, that contained the term “smouldering myeloma” and any one of the following terms: “prognosis” or “imaging” or “biomarkers” or “risk factors” or “progression” or “therapy”. We also reviewed recent reviews on smouldering multiple myeloma. Members of the International Myeloma Working Group were then asked to identify any appropriate citation that was of interest but not detected by the search strategy.

causal role of the monoclonal protein is suspected are regarded as having monoclonal gammopathy-associated neuropathy.

All CRAB features used for diagnosis must be attributable to the underlying plasma cell disorder. In particular, hypercalcaemia in the absence of clear multiple myeloma bone disease must be carefully investigated to rule out other causes such as hyperparathyroidism. Similarly, care should be taken in attribution of clinically significant anaemia as a CRAB criterion for multiple myeloma if the extent of BMPC involvement seems negligible relative to the degree of reduction in haemoglobin or haematocrit.

Other specific disease states

The present IMWG diagnostic criteria and recommended terminology for MGUS and related plasma cell disorders, including solitary plasmacytoma and immunoglobulin light-chain amyloidosis, are listed in table 1. The prognosis of solitary plasmacytoma varies depending on presence of clonal plasma cells in the bone marrow.\(^\text{15–16}\) It therefore consists of two distinct entities: solitary plasmacytoma (no clonal BMPCs) and solitary plasmacytoma with low marrow involvement (<10% clonal BMPCs). By contrast, patients with solitary plasmacytoma and 10% or more of clonal plasma cells are classified as multiple myeloma. The IMWG also recommends that POEMS syndrome\(^\text{21}\) and osteosclerotic multiple myeloma\(^\text{21}\) be regarded as distinct subtypes of multiple myeloma, given the markedly different clinical presentation, therapeutic approach, response to treatment, and prognosis.

Future directions

The updated diagnostic criteria move multiple myeloma into line with other malignancies by removing the need for documented end-organ damage as a mandatory requirement for the definition of malignancy.\(^\text{21,30–34,36–37}\) They address a major drawback in terminology that prevented patients with clearcut malignancy and very high risk of developing end-organ damage from receiving therapy until such damage is clinically manifest.

Promising markers for further study are listed in table 2.\(^\text{28–99}\) Multiparametric flow cytometry can help distinguish clonal from normal plasma cells. In patients with MGUS, a substantial proportion of polyclonal plasma cells persist, whereas in multiple myeloma almost all plasma cells (>95%) are clonal.\(^\text{24,98,99}\) Patients with smouldering multiple myeloma who display an immunophenotypic pattern identical to multiple myeloma have a higher risk of progression.\(^\text{48}\) High levels of circulating plasma cells and high proliferative rate of bone marrow plasma cells can accurately identify patients with ultra-high risk of progression, but the methods that have been reported are not universally available, and cut-off points using sensitive and automated multiparametric flow cytometric methods are needed.\(^\text{51–99}\) Specific cytogenetic abnormalities, especially translocation t(4;14), 1q gain, and deletion 17p, have been associated with a high risk of progression in smouldering multiple myeloma and need to be combined with other known biomarkers to improve predictive value.\(^\text{97–98}\) In future, genomic markers will probably be incorporated to more accurately predict risk of progression.\(^\text{100}\)

An increase in the serum monoclonal protein level by at least 10% on two successive evaluations within a 6-month period has been associated with a 65% probability of progression in smouldering multiple myeloma.\(^\text{48}\) However, in the observation group of the Spanish trial of smouldering multiple myeloma,\(^\text{38}\) patients with a rise in monoclonal protein of at least 25% over two successive evaluations did not have a significant increase in risk of progression compared with patients without such an increase (2-year risk of 69% with increased monoclonal protein vs 75% for controls; MMV, unpublished data). Even increasing the threshold to a 50% or 100% increase did not result in significant differences. However, the Spanish trial included only high-risk smouldering multiple myeloma, and more data are needed.\(^\text{38}\) At present, data are insufficient to incorporate increasing monoclonal protein as a myeloma-defining event; we recommend that such patients be followed up more closely, and advanced imaging methods be considered to determine whether they meet the present diagnostic criteria for multiple myeloma.

Additional biomarkers with the same or better performance characteristics than the ones included in this updated definition will probably be identified with
ongoing research. The IMWG recognises that validated (ie, substantiated by more than two independent studies) biomarkers associated with a risk of progression of smouldering multiple myeloma to multiple myeloma of at least 80% within 2 years can be added to the diagnostic criteria in the future.

Contributors

SVR and JSM wrote the first draft of the manuscript after reviewing scientific literature and discussion with members of the International Myeloma Working Group. All authors listed on the manuscript reviewed the draft, provided detailed input and comments, and contributed to the final report.

Declarations of interest

MAD reports personal fees from Celgene, Ortho Biotech, and Onyx. AP reports personal fees from Amgen, Bristol-Myers Squibb, Gennmab A/S, Janssen-Cilag, Millennium Pharmaceuticals, Onyx Pharmaceuticals, Celgene, Sanofi Aventis, and Array BioPharma. JB reports personal fees from Celgene and Janssen. GM reports personal fees from Millennium Takeda. SK reports grants from Celgene, Millennium, Novartis, Cephalon/Teva, Abbvie, and Onyx. PR has been a member of advisory committees for Millennium, Celgene, Johnson & Johnson, and Novartis. BP has received honoraria from Millennium, Celgene, Janssen, and The Binding Site Group Ltd. AD reports grants from Celgene, Millennium, Novartis, Pfizer, and Janssen. BW reports grants and personal fees from Janssen Research and Development, personal fees from Celgene and Onyx, and grants from Millennium. SZ reports grants from Celgene, Janssen, and Millennium. SL reports personal fees from Millennium, Celgene, Novartis, Onyx, Sanofi, Janssen, and Bristol-Myers Squibb. JL has received honoraria from Janssen and Celgene. EZ reports grants from Janssen-Cilag and Celgene. SJ has been a consultant for Celgene, Sanofi, and Bristol-Myers Squibb. OS reports personal fees from Celgene and Janssen. MB is in the speakers bureau for Celgene, Janssen-Cilag and Amgen, and serves on advisory boards for Janssen-Cilag, Bristol-Myers Squibb, and Novartis. MC reports personal fees from Janssen, Celgene, Millennium, Onyx, and Bristol-Myers Squibb. KCA reports personal fees from Celgene, Millennium, Gilead, Sanofi Aventis, and Onyx. All other authors declare no competing interests.

References

